skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ioka, Kunihito"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Very-high-energy (VHE) photons around TeV energies from a gamma-ray burst (GRB) jet will play an essential role in the multimessenger era, with a fair fraction of the events being observed off-axis to the jet. We show that different energy photons (MeV and TeV photons in particular) arrive from different emission zones for off-axis observers even if the emission radius is the same. The location of the emission region depends on the jet structure of the surface brightness, and the structures are generally different at different energies, mainly due to the attenuation of VHE photons by electron–positron pair creation. This off-axis zone-shift effect does not justify the usual assumption of the one emission zone at a certain radius and also produces a time delay of VHE photons comparable to the GRB duration, which is crucial for future VHE observations, such as by the Cherenkov Telescope Array. 
    more » « less
  2. Abstract The detection of the hyper-bright gamma-ray burst (GRB) 221009A enables us to explore the nature of the GRB emission and the origin of very high-energy gamma rays. We analyze the Fermi Large Area Telescope (Fermi-LAT) data of this burst and investigate the GeV–TeV emission in the framework of the external reverse-shock model. We show that the early ∼1–10 GeV emission can be explained by the external inverse-Compton mechanism via upscattering MeV gamma rays by electrons accelerated at the reverse shock, in addition to the synchrotron self-Compton component. The predicted early optical flux could have been brighter than that of the naked-eye GRB 080319B. We also show that proton synchrotron emission from accelerated ultrahigh-energy cosmic rays (UHECRs) is detectable and could potentially explain ≳TeV photons detected by LHAASO or constrain the UHECR acceleration mechanism. Our model suggests that the detection of ( 10 TeV ) photons with energies up to ∼18 TeV is possible for reasonable models of the extragalactic background light without invoking new physics and predicts anticorrelations between MeV photons and TeV photons, which can be tested with the LHAASO data. 
    more » « less